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ABSTRACT 
Designed experiments have been used to secure 

orthogonal data in a typical light duty liquid deter- 
gent system. Regression analyses of the data have 
provided prediction equations relating composition to 
performance and physical properties for formulations 
in this system. The use of these equations in a 
n o n l i n e a r  programming computer optimization 
program is described, illustrated by examples taken 
from a limited subsystem wherein two of the six 
components are held constant. Costs, types and uses 
of such optimization procedures are considered. 

INTRODUCTION 
This paper discusses one strategy for the optimization of 

detergent systems. This strategy involves a tl~ree-step 
sequence: (a) statistically designed experiments capable of 
estimating linear, quadratic and interactive effects; (b) 
stepwise multiple regression analyses; and (c) function 
optimization. Recognizing that one or more of these 
expressions may be unfamiliar to some, it is appropriate to 
begin with a brief description of each. 

Statistically Designed Experiments 
Multifactor experiments which have been arranged in 

certain optimum ways are called "statistically designed 
experiments". The objective here is to obtain the most 
information from a rather small number of experiments. 
Typically, one begins with a factorial design which has been 
augmented with certain points to permit the estimation of 
curvature. As a rule, about six experiments will be required 
for every variable in the design. Numerous papers have been 
published on the merits of such designed experiments. A 
good review is provided by Davies (1). 

Stepwise Multiple Regression Analysis 
Once the data have been obtained from a designed 

experiment, it is convenient to express the results as 
prediction equations. One way to obtain such equations is 
to submit the data to multiple regression analysis. Of the 
available methods for multiple regression analysis, one of 
the more popular is "stepwise analysis," which introduces 
terms into linear equations in a sequential fashion. A good 
"stepwise program" not only estimates regression coef- 
ficients, but also tests these coefficients for statistical 
significance and suggests which if any of the observations 
might be inconsistent with the remaining data. Sub- 
stantially all stepwise regression programs are based on a 
scheme first proposed by Efroymson (2). 

Function Optimization 
Once prediction equations have been obtained, they 

serve to permit prediction of responses at combinations of 
conditions which have not yet been studied in the 

1One of seven papers being published from the Symposium, 
"Computer  Systems and Applications in the Oil and Fat Indust ry"  
presented at the ISF-AOCS World Congress, Chicago, September 
1970 

laboratory. This is accomplished by merely substituting 
into the equations the proposed conditions and computing 
the predicted result. One may have quite a few equations 
which represent a detergent system. 

The wealth of information revealed by these equations is 
a source of some frustration, for one can spend many hours 
evaluating proposed detergent systems by laboring over a 
desk calculator. One possible solution to this problem is to 
convert the equations to contour plots with the aid of a 
digital computer. Contour plots for a light duty liquid 
system have been published by Huggins (3). Limitations of 
this approach stem from the sheer complexity of depicting, 
comprehending and searching the multi-dimensional space 
for each response to reach the best compromise in a many 
faceted problem. For instance, if a system composed of five 
components also exhibits five responses (including cost), 
one is forced to generate and manipulate perhaps 20 or 30 
contour plots in order to find a good compromise. Even so, 
the derived compromise is somewhat arbitrary. 

An alternative to contour plots has become available 
with the advent of computer search routines which c a n  

locate an optimum combination of independent variables. 
Such programs have been discussed in the operations 
research literature for a number of years. But only recently 
have they been structured for routine application by casual 
users of computers. A nontechnical review of some of these 
programs is provided by Barneson (4). Reports of applica- 
t ion to specific fields of interest are beginning to appear, 
rubber formulation (5,6), for example. 

The Strategy 
The proposed strategy, then, is to obtain an adequate 

collection of multifactor data which covers essentially the 
full range of the independent variables, to fit the resulting 
data to multivariable equations which are linear in the 
coefficients, and to wed these prediction equations to a 
viable search program capable of optimizing a system 
subject to constraints. 

Some homework must be done before undertaking such 
a venture. One begins by selecting a system of independent 
variables (in this instance, one must decide which of many 
possible components will be included in the proposed 
detergent system). These variables must be selected from 
prior knowledge of markets and applications. Further, the 
ranges over which these variables are to be varied must also 
be anticipated. These ranges are chosen from prior experi- 
mentation and screening experiments. Although not dis- 
cussed here, we have found self-directing optimization to be 
very helpful in determining where to position an experi- 
mental design. A recent discussion of self-directing optimi- 
zation is given by Himmelblau (7). 

Applications 
Any efficient system of investigation will be most useful 

in application to a new system. However, perturbations to a 
system such as price changes or modification of ingredients 
can provide new ground to cover. Such an application is 
illustrated he re - the  search to understand and utilize the 
capabilities of new light duty liquid systems based on 
completely biodegradable surfactants. 
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TABLE I 

Central  Composite Experimental Design 

No. LAS a AES NON CDA SXS 

1 15 2 8 2 2 
2 30 2 8 2 5 
3 15 8 8 2 5 
4 30 8 8 2 2 
5 15 2 2 2 5 
6 30 2 2 2 2 
7 15 8 2 2 2 
8 30 8 2 2 5 
9 15 2 8 5 5 

10 30 2 8 5 2 
11 15 8 8 5 2 
12 30 8 8 5 5 
13 15 2 2 5 2 
14 30 2 2 5 5 
15 15 8 2 5 5 
16 30 8 2 5 2 
17~20 22.5 5 5 3.5 3.5 
21 35 5 5 3.5 3.5 
22 10 5 5 3.5 3.5 
23 22.5 0 5 3.5 3.5 
24 22.5 10 5 3.5 3.5 
25 22.5 5 0 3.5 3.5 
26 22.5 5 10 3.5 3.5 
27 22.5 5 5 0 3.5 
28 22.5 5 5 7 3.5 
29 22.5 5 5 3.5 0 
30 22.5 5 5 3.5 7 

aAbbreviations: LAS, linear alkylate sulfonate, type 11; AES, 
alcohol ethoxylate sulfate 25-L-3A; NON, Tergitol nonionic 15-S-9; 
CDA, coconut diethanolamide; and SXS, sodium xylene sulfonate. 

PROCEDURES 
We selected for  our  initial appl ica t ion  of  comp u t e r  

op t imiza t ion  the light du ty  liquid sys tem using the  fol- 
lowing ingredients  over the  range (per  cent  a c t i v e s ) s h o w n :  
linear alkylate sulfonate ,  type  11 (LAS),  10-35%; a lcohol  
e thoxy la t e  sulfate 25-L-3A (AES),  0-10%;Tergitol  non ion ic  
15-S-9 (NON), 0-10%; coconu t  d ie thano lamide  (CDA),  
0-7%; sod ium xylene sulfonate  (SXS),  0-7%; and SD3A 
e thanol  (EtOH),  0-7%. The first four  surfac tants  were 
selected because of their  k n o w n  uti l i ty in light du ty  liquid 
per formance ;  the  last two  ingredients  are k n o w n  hydro-  
t ropes  and viscosity control lers .  

Experimental Design 
Initial expe r imen t s  were done  on the  simpler  five-com- 

ponen t  sys tem no t  including e thanol .  For  a sys tem of  this 
size, sat isfactory coverage of  the variables and o r thogona l  
data for analysis were ob ta ined  f rom the fo rmula t ions  
shown in Table I. The first 16 exper imen t s  provide a 

two-level f ract ional  factorial  design in five variables, suffi- 
cient to show main effects  and in teract ions .  To this were 
added four  center  point  repl icates  (numbers  17-20) and 
formulas  test ing out ly ing values of  each variable (numbers  
21-30). These 30 fo rmula t ions  provided a data base 
suff icient  to show main effects ,  two- fac to r  in terac t ions ,  and 
curvature for  each response  tes ted.  

D e p e n d e n t  V a r i a b l e s  

Each of the fo rmula t ions  above was tes ted  for  those  
physical  proper t ies  and pe r fo rmance  responses  considered 
impor tan t .  

Spangler Dynamic Foam Test. F o a m  stabil i ty in the  
presence  of  soil ( "Cr i sco" )  was de t e rmined  using the  
Terg-O-Tometer  test  p rocedure  publ ished by W.G. Spangler 
(8). Test condi t ions  were 0.0125% by weight  de te rgen t  on 
an "as is" basis, 50 C initial ba th  t empera tu re ,  varying 
water  hardness  and 75 r p m  agitator  speed.  

Modified CSMA Dishwashing Test. F o a m  stabil i ty in the  
presence of  soil (solid vegetable s h o r t e n i n g - " C r i s c o " ,  
" S p r y " ,  e t c . - f l o u r ,  oleic acid mix ture )  was es t imated  by  
the  CSMA Hand Dishwashing Procedure  (9). Test condi-  
t ions  were 0.1% by weight  de te rgen t  on  an "as is" basis, 
46 C initial ba th  t empera tu re ,  and water  of  varying hard-  
ness. 

Ross-Miles Flash Foam Test. The Ross-Miles foam test  
was conduc t ed  according to the ASTM Dl173-53  proce-  
dure at 0.1% de te rgen t  concen t ra t ion ,  150 p p m  water  
hardness  and 50 C. 

Viscosity. Viscosi ty  was measured wi th  a Cannon-Fenske  
v iscometer  tube in a cons tan t  t empera tu re  ba th  set at 25 C 
(ASTM D445).  

Haze-Clear Points. Haze-clear poin ts  were de te rmined  as 
a measure of  the low t empera tu re  solubil i ty l imits o f  the  
fo rmula ted  de tergent .  A 20 ml sample of  de te rgen t  was 
placed in a test  tube ,  stirred gent ly  wi th  a t h e r m o m e t e r  to  
avoid air bubbles ,  and cooled slowly in a dry ice-acetone 
ba th  until clouding or haziness persisted.  This t empera tu re  
was recorded  as the  haze poin t .  The sample was cooled 
fu r ther  unti l  comple te ly  c loudy and then  al lowed to  warm,  
wi th  stirring, until  the de te rgen t  was clear. This t empera -  
ture was recorded  as the  clear point .  The average of  these is 
recorded.  

Regression Analysis 
The data for each response  were analyzed by stepwise 

mult iple  regression analysis to  yield significant l inear,  
curvilinear and in te rac t ion  te rms  for the  i n d e p e n d e n t  
variables. The p rocedure  for  the  regression analysis is 
similar to that  given by  E f r o y m s o n  (2). 

T rans fo rmat ion  of  the d e p e n d e n t  variables was found  

TABLE II 

Analysis of Data From Designed Experiment 

Response 

Data Fit of regression equations a 

Standard Standard Multiple 
Mean deviation error R 2 

Overall 
F 

Ross-Miles foam, 
mm, 150 ppm 145 29 9.3 .92 41 

CSMA plates, 
50 ppm 16.8 2.4 1.1 .82 50 

Spangler, swatches 
50 ppm 11.6 2.8 0.9 .92 69 

150 ppm 13.2 2.4 0.6 .94 65 

Viscosity, cs 275 151 47 .93 39 

Haze-clear point, 
C 3.1 12.5 4.7 .88 32 

aEquations shown in Table III. 
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TABLE III 

Prediction Equations When NON = 3.0 

CSMA50, plates = 

SPso, swatches 

SP150, swatches = 

RMIs0 

log VISC = 

log (HC § 50) = 

17.23 + .313 (LASa-22.5) § .213 (AES-5) + .356 (CDA-3.5) 

10.31 + .268 (LAS-22.5) + .32 (AES-5) + .47 (CDA-3.5) 

12.6 + .235 (LAS-22.5) + .32 (AES-5) + .32 (CDA-3.5) 
-.067 (LAS-22.5)(CDA-3.5) - .0096 (LAS-22.5) 2 

163.3 + 1.79 (LAS-22.5) + 3.69 (AES-5) + 2.06 (CDA-3.5) 
-.246 (LAS-22.5)(AES-5) -1.25 (AES-5)(CDA-3.5) - 1.15 
(AES-5) 2 

2.48 + .0415 (LAS-22.5) + .0156 (AES-5) + .0566 (CDA-3.5) 
-.1047 (SXS-3.5) - .00174 (LAS-22.5)(AES-5) 
-.00591 (LAS-22.5)(CDA-3.5) + .0125 (LAS-22.5)(SXS-3.5) 

+.01 (AES-5)(SXS-3.5) + .0152 (CDA-3.5)(SXS-3.5) 
-.00122 (LAS-22.5) 2 

1.67 + .0057 (LAS-22.$) -.00394 (AES-5) - .0199 (SXS-3.5) 
-.00262 (LAS-22.5)(SXS-3.5) + .00105 (LAS-22.5) z 

aAbbreviations: see Table I and Table IV. 
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desirable for the viscosity and haze-clear point  responses .  
For  viscosity,  the logari thm was used. For  haze-clear poin t ,  
best  results  were found  when  the logari thm of the value 
plus the cons tan t  50 was used. 

Optimization Program 
The op t imiza t ion  program we use is called " S i d e w i n d e r "  

and was developed at Union  Carbide by C.D. Hendrix .  
Al though  it is p ropr ie ta ry ,  we offer  here a short  descr ip t ion  
and classification so that  the reader may es t imate  what  can 
be accompl ished  wi th  programs of  its type.  

The main program provides for the set t ing up and 
op t imiza t ion  of  an exper imenta l  design in any number  of  
i ndependen t  variables. It is generally applicable to any 
op t imiza t ion  prob lem for which  the necessary descriptive 
equa t ions  are available. Because these equat ions  o f t en  
conta in  nonl inear  terms,  the  general program fits into the 
area of  nonl inear  programming.  The program begins 
explora t ion  of  the te r r i tory  at any point  designated by  the  
exper imente r .  Using the  " S i m p l e x "  m e t h o d  o f  s teepes t  
ascent op t imiza t ion ,  it does exper iments ,  refers each of  
them to the  objective subprogram for evaluation,  and then  
ranks the exper iments .  Based on the ranking, new runs are 
calculated in the d i rec t ion  of  be t t e r  scores until  no fur ther  
progress is made.  The program automat ical ly  expands  and 
cont rac ts  the step size as it progresses to the op t imum.  At  
each poin t  in the progress,  the object ive program is 
consul ted  for an evaluat ion of  the formula t ions ,  scored 
according to overall wor th  or desirabili ty.  A descr ipt ion of  
the m e t h o d  and compar i son  wi th  several o the r  techniques  is 
given by Barneson (4). The original scheme was p roposed  
by Spendley ,  Hext  and Himswor th  (10) and modif ied  by 
Nelder and Mead (11). 

The Objective Subprogram 
The object ive subprogram is the responsibi l i ty  and 

p roper ty  of  the user of  "S idewinde r . "  It conta ins  the 
predict ive equat ions  and o the r  mathemat ica l  or logical 
s t a t emen t s  which  allow the overall wor th  of  the individual 
trials made by " S i d e w i n d e r "  to be calculated. As used in 
this light du ty  liquid invest igat ion,  it conta ins  the fol- 
lowing: (a) Means to encode  the  i ndependen t  variable value 
into deviat ion f rom mean to  fit the equat ions;  (b) predic- 
t ion  equa t ions  for the pe r fo rmance  tests and for  physical 
proper t ies ;  (c) s t ra ight forward  objective e lements  such as 
cost equat ions;  and (d) a discretely specified rout ine  for  
calculating the  score or wor th  o f  each trial. 

Scoring 

The prob lem of scoring is a general and impor t an t  one.  
We must  decide in advance how to rate any possible 
combina t ion  of  proper t ies ,  pe r formance ,  cost ,  etc. This 
presupposes  tha t  we k n o w  the  t rue wor th  of  each incre- 
ment  of  each response.  The assignment of  linear or 
nonl inear  rating scales for  all possible values of  each 
response may be done so tha t  the best  response equals 1 
and the wors t  equals 0. When these ratings are cross 
mult ipl ied,  the  scores can range f rom 0 up to a perfect  
rating of  1. A discussion of  this sys tem is con ta ined  in the 
work by Derringer (5). 

But we usually d o n ' t  know the relative wor th  of the 
responses.  One simple way to  start  is to cross-mult iply all 
responses  which  we wish to be large by the reciprocal  of 
responses  we wish to minimize .  This implies that  a 10% gain 
in any response equals a 10% gain in any o the r  response.  
Where the responses  are not  linear, this may not  give the 
desired results.  For  example ,  CSMA p la tes /penny  is not  a 

TABLE IV 

Sensitivity Analysis, Viscosity = 200-250 

Limits Predicted performance Formulation 

RM a CSMA SP H/C RM CSMA SP H/C VISC LAS a AES NON CDA SXS Cost 

0 16 0 0 143 16 8.7 -1.3 250 22.2 3.2 3 1.3 2.9 4.70 
160 16 0 --- 160 16 8.8 -1.9 249 22.0 5.6 3 0.1 2.6 4.83 

0 17 0 --- 157 17 9.6 -3.1 250 25.4 4.3 3 0.7 5.1 5.39 
160 17 0 0 160 17 10.3 -3.5 250 20.4 3.9 3 5.3 3.9 5.68 

0 16 9 --- 142 16 9 -1.4 250 21.7 3.0 3 2.0 2.9 4.80 
160 16 9 0 160 16 9.1 -3.2 249 20.1 5.9 3 1.6 2.7 5.01 

0 17 9 0 157 17 9.6 -3.1 250 25.4 4.3 3 0.7 5.1 5.39 
160 17 9 --- 160 17 10.3 -3.5 250 20.4 3.9 3 5.3 3.9 5.68 

aAbbreviations: RM, Ross-Miles Flash Foam Test, ml; CSMA, dishwashing test, plates; SP, Spangler dynamic foam test, swatches; H]C, 
haze-clear point, C; VISC, viscosity, cs. See also Table I. 
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linear response; more than twice the cost is needed to 
double the plates. Such a score would lead only to lowest 
cost formulations. The price may be fixed at the desired 
level, but this may. still lead to products in which some 
property is unacceptably low. 

An easier problem is the duplication of a successful 
product performance spectrum at lowest possible cost. 
Many of our studies are guided in this fashion. The score is 
set equal to negative cost minus penalties assigned for 
violation of minimum performance thresholds or other 
constraints. No credit is given for exceeding the minimum 
performance. By assigning steep penalties to guide out of 
contrained areas, we channel the optimization into accept- 
able territory where lowest cost may be sought. This same 
method of penalty scoring is used to keep the independent 
variables out of forbidden territory, e.g., away from 
negative amounts of ingredients. 

R ES U LTS 
We have two areas of results to consider, first, results of 

the designed experiment and regression analyses, and 
second, the operation of our optimization program. Both of 
these tend to reveal proprietary information because they 
deal with the hidden strengths and weaknesses of a system 
which is competitive in the marketplace. For this reason we 
have simplified the system. Results are presented for the 
artificially restricted slice through six-dimensional space 
which involves only those formulations which contain 3% 
nonionic and no alcohol. This encompasses a useful and 
competitive area which illustrates the operation of the 
larger system. 

Analysis of Data 
The experimental design gave data whose means and 

standard deviations are shown in Table II. Also listed are 
the results of the multiple regression analyses showing the 
multiple R 2 (fraction of variance accounted for), residual 
standard error of prediction, and overall F levels achieved 
by the regression equations. You will note that the viscosity 
is the most difficult response to predict with accuracy. This 
is most likely because of higher order interactions. The 
equations, corrected to correspond to a constant nonionic 
level of 3%, are listed in Table III. Some equations are 
rather straightforward lists of main effects while others deal 
in curvilinear terms and interactions. The main effects of 
the nonionic have been absorbed into the main constant; 
nonionic interactions are absorbed in the constants of the 
other variables. 

Illustrated Use of Optimization Program 
We use "Sidewinder" on a time-shared computer system 

with remote terminal or on the larger batch-processing 
computer such as the IBM 360/65. A typical optimization 
on the time-shared system might take 10 rain operator time 
and 1 rain computer time. Scheme 1 illustrates the progress 
of such a problem. The underlined entries are supplied by 
the operator, i.e., low thresholds or limits, high limits, 
ingredient prices and starting position (high and low levels 
of each variable). The computer then prints its progress 
every 100 steps. The first line is the formula, LAS, AES, 
NON, CDA, SXS, EtOH. The second line lists the results 
predicted, Viscosity, Ross-Miles (150 ppm), CSMA plates 
(50 ppm), haze clear point, cost, Spangler swatches (150 
ppm), and score. 

We have illustrated an example of slow progress. There 
was initial difficulty in finding a combination of actives 
yielding 17 plates without violating the upper viscosity 
limit of 250 cs. Hence, the very large negative scores in the 
first two entries. Once acceptable formulations were found 
yielding no penalties, the score became equal to negative 
cost and the cost was reduced. Further searching gave the 

6VARIABLES, RESULTS LISTED EACH 100 CYCLES 
LOW LIMITS: VISC, RM150, CSMA50, SP50, LAS , AES, NON, CDA, SXS, ALC 

200 0 17 0 0 0 3 0 0 0 

HIGH LIMITS: VISC, H/C, COST 
250 50 10 

INGRED PRICES: LAS AES NON CDA SXS ALC 
.1365 .2041 .1425 .25 .085 .0622 

STARTING LOWS AND HIGHS 
19 20 5. 5.5 3 3 2 2.1 2 2,1 0 0 

EQUATIONS 9991 EXC SPANGLER 999B AND AHC, VISC 20ECS21B-CORR PROGRAM 
20ECS33 
VALUE STUDY 20ECS34 

iNCOMPLETE 

21.098 4.883 
248.636 154.655 

INCOMPLETE 

21.183 7.204 
249.772 166.6t9 

INCOMPLETE 

24.197 6.891 
248.325 169.358 

NORMAL STOP 

24.185 6.778 
249.989 169.012 

3.000 0.936 2.473 0.0 
15.853 -2,002 4.748 8.691 -678.831 

3.000 O.O00 2.6B 1 0.0 
16.041 -3.257 5.017 9 .016 -568.534 

3.000 0.351 3.770 0.0 
17.043 .2.334 5.545 9,889 -5.545 

3.000 0.314 3.712 0.0 
17.002 -2.206 5.506 9.832 

SCHEME t 

-5.506 

lower cost formulation of Table IV, example 3, with re- 
duced Ross-Miles performance. 

The first successful optimization is exhilarat ing-what 
could be better than an optimum? But horizons are quickly 
broadened. The question becomes that of seeking the most 
appropriate answer out of hundreds of optimums which can 
be sought as the elements of the question are changed. Let 
us list some of the obvious variables: the prices charged for 
raw materials, the floors under acceptable performance, and 
the constraints placed on physical properties. 

It becomes apparent that each optimization is an 
experiment in territory where the answers are unknown. 
There are many variables subject to manipulation. It is 
desirable to methodically explore the sensitivity of the 
system cost to changes in these variables. 

A limited illustration of this approach is shown in Table 
IV. The area of interest is the cheapest formulation to yield 
at least 16 CSMA plates, 160 mm Ross-Miles foam, 9 
Spangler swatches, and haze-clear point of 0 C or lower, 
with viscosity in the range of 200-250 cs. The group of 
eight experiments shown in Table IV is an experiment in 
four variables to show how changes in the Ross-Miles, 
CSMA, Spangler and haze-clear point demands affect the 
price. 

The following information is apparent by simple 
inspection of the results: (a) In no case was the haze-clear 
point limiting. The upper limit on viscosity was con- 
straining so that sufficient hydrotrope was necessary in 
each case to meet the haze-clear point requirement. (b) The 
17th plate cost on the average about 0.7 cents. (c) The 
nine-swatch Spangler requirement costs nothing extra on 
the 17-plate level. At the 16-plate level it costs about 0.15 
cents. (d) The average incremental cost of meeting the 160 
Ross-Miles demand was 0.23, less at the 17-CSMA plate 
level and more at the 16-CSMA plate level. Such infor- 
mation shows some of the effects and interactions available 
within this system at the point of the investigation. 

DISCUSSION 
Rapid progress is being made in the ability to combine 

the strengths of experimental design, regression analysis and 
computer optimization programs in an overall strategy to 
meet the needs of product managers. The apparent 
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s t r eng ths  and  weaknesses  of  l ight  d u t y  l iquid sys tems  in t he  
marke tp l ace  will depend  on  t he  relat ive values p laced on  
the  riaany tes ts  of  p e r f o r m a n c e  and  aes the t i c  quali t ies.  By 
the  s t u d y  of  o p t i m i z e d  sys tems,  managers  of  m a r ke t s  and  
p r o d u c t s  may  exp lore  the  relat ive costs  of  each aspect  of  
p r o d u c t  accep tab i l i ty .  The  u n d e r s t a n d i n g  gained should  aid 
in the  design of  p r o d u c t s  which  c o m b i n e  the  mos t  useful  
and  appeal l ing fea tures  at  lowest  cos t  c o m m e n s u r a t e  w i t h  
in te rna l  p ro f i t ab i l i ty .  
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